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Abstract

This study presents the dynamic stability of a simply supported, viscoelastic beam subjected to an axially harmonic
load. The complex modulus of viscoelastic material is considered to depend on the frequency of parametric loading.
Applying Galerkin’s method, the governing equation of motion is simplified to the complex form of the Mathieu equa-
tion with frequency-dependent coefficients. Then, the boundary of dynamic stability is determined by coupling the
numerical binary search procedure and the complex incremental harmonic balance (IHB) method, which are developed
in this study. This algorithm is easily, simply and conveniently used to perform computer numerical analysis. The
results indicate that the loss factor presents the damping capacity of viscoelastic material. The numerical results reveal
that the frequency influences the dynamic stability.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic stability of the elastic system has been an important subject in the past years. Most
researchers in this area have considered the material to be elastic and to have material properties that
are independent of frequency. A book by Bolotin (1964) provided detailed practical information about this
topic. Various industries rely on vibration control, so viscoelastic materials, such as rubber and polymers,
are widely used. Classical constitutive models of viscoelastic material, such as the Maxwell model, the Voigt
model and the standard linear model (Sun and Lu, 1995) are generally applied. In these models, viscoelastic
materials have a combination of viscous and elastic characteristics and viscous materials are assumed to be
ideal viscous or Newtonian viscous materials. Based on such an assumption, viscous damping is described
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Nomenclature
CM complex modulus
MSE modal strain energy
FD fractional derivative
ATF  augmenting thermodynamic fields
ADF  anelastic displacement fields
AHL augmented Hooke’s law
GHM Golla—Hughes—McTavish
IHB  incremental harmonic balance
a, b, p, ¢ constants determined by viscoelastic material property
ay, b coefficients of Fourier series of fj
{a} amplitude vector
B(w;) objective function defined by Eq. (9)
C unbalanced term due to the increment Af
[C] matrix, whose elements are shown in Appendix A
[C1], [C5] sub-matrix of matrix [C], whose elements are shown in Appendix A
D loss factor corrected by applied constant axial force F;, defined by Eq. (5)
D, D that corresponds to w;
E, reference constant static modulus of real part of complex modulus E* at w, ~ 0
E :ER/Er
E* complex modulus of viscoelastic material (=Egr[1 + 1] = Er + 1E})
Egr real part of complex modulus
E; imaginary part of complex modulus
f amplitude of the first mode
fo current value of f
St amplitude of the jth mode
F(1) periodic axial force (=F; + Fqcoswt)
F amplitudes of static force
Fy amplitudes of dynamic force
G =(E-P,—F)/(P,~F)
G, G, corresponding to w;
i V-1
1 moment of inertia of cross section of beam
j modal index
L length of beam
L reference length of beam for defining 7,
m mass per unit length of beam
M(Q,/,f,7,®) dimensionless complex Mathieu equation defined by Eq. (6)
ny natural frequency of lateral vibration of elastic beam with elastic modulus E,, under constant
axial force Fj, defined by Eq. (7)
iy reference parameter used in discussion of influence of static force Fj
7y reference parameter used in discussion of influence of length of beam
N positive integer

midpoint of interval [uy, vy]
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P unbalanced term due to the increment A/

P* static critical load for elastic beam with elastic modulus Er

P; static critical load for beam with elastic modulus E,, defined by Eq. (7)
{P} vector, whose elements are shown in Appendix A

{Py}, {P>} sub-vector of vector {P}, elements shown in Appendix A

0 unbalanced term due to the increment AQ

{0} vector, whose elements are shown in Appendix A
{01}, {O>} sub-vector of vector {Q}, whose elements are shown in Appendix A
R corrective term

{R} vector, whose elements are shown in Appendix A
{R1}, {R>} sub-vector of vector {R}, whose elements are shown in Appendix A
t time

[t0,v0]  =[®min> Dmax]

[ug,vi] sub-interval

w(x,t) lateral displacement of beam

wj(x)  normalized eigenfunction of simply supported beam
X axial position along undeflected beam

B material loss factor

{of} virtual of f defined by Eq. (17)

Aay, Ab coefficients of Fourier series of Afy

{Aa}  amplitude increment vector of {a}

Af increment of variable f

AL increment of variable 4

AQ increment of variable Q

€ tolerance

A load parameter defined by Eq. (5)

Ao current value of variable A

Ar load parameter for beam with elastic modulus E,, defined by Eq. (7)

T non-dimensional time (=wt)

) frequency of applied force

Wy frequency of vibration, corresponding to (24 w;), A (w;))

w1 frequency of vibration, corresponding to (2, (w;_1), 41— 1(®;_1))

W, frequency of vibration of beam

Wy natural frequency of lateral vibration of elastic beam loaded by constant axial force F, defined
by Eq. (5)

[Omin, ®max] frequency range of complex modulus

Q reduced frequency of vibration (=w/w)

Qy current value of Q

(QAwy), A{w;)) any point on instability boundary
(Qi_1(wi_1), i_1(w;—1)) point before (2(w;), A{w;)) on instability boundary
@ parametric frequency of vibration (=w/2)

Operators
Re()  real part
Im() imaginary part
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Il norm

0 differential operator
Superscript

T transpose

by a constant, and the dimensionless damping ratio increases with frequency. Representing the internal
damping of a viscoelastic material as viscous may generate serious errors. Steidel (1989) pointed out that
the actual damping ratio decreases as the frequency increases.

Numerous methods of modeling frequency-dependent viscoelastic materials have been proposed. The
dependence of complex modulus (CM) on frequency was often modeled even in the 1980s. Furthermore,
Huang et al. (1996), Shen (1995, 1996), and Varadan et al. (1996) exploited the exponential formula for
complex modulus developed by Douglas and Yang (1978). Johnson and Kienholz (1981) developed the
modal strain energy (MSE) method, which states that the damped structure can be represented in terms
of real normal modes of the associated undamped system if appropriate damping terms are inserted into
the uncoupled equations of motion. Bagley and Torvik (1983) proposed a fractional derivative (FD) model
for the frequency-domain analyses of viscoelastic damping, leading in the time-domain to differential equa-
tions of fractional order, which are rather complicated to solve. The method of augmenting thermodynamic
fields (ATF) was developed from a study of Lesieutre and Mingori (1990), which based on the introduction
of internal variables. Lesieutre and Bianchini (1995) later extended the ATF model, which was originally
applicable only to unidimensional problems, to the three-dimensional anelastic displacement fields
(ADF). In parallel, Dovstam (1995) proposed an augmented Hooke’s law (AHL), but performed only a
frequency-domain analysis. Golla and Hughes (1985) and McTavish and Hughes (1993) also developed
the Golla-Hughes—-McTavish (GHM) model, also based on the introduction of dissipative variables. Yiu’s
model (1993), Yiu (1994) applied a generalized Maxwell model that provided standard mechanical spring-
dashpot configurations and canonical mathematical forms to fit the viscoelastic material properties. This
study will apply the frequency-dependent exponential formula for the complex modulus (CM) to model
viscoelastic materials.

Szyszkowski and Glockner (1985), Gurgoze (1987), Cederbaum and Mond (1992), and Shirahatti and
Sinha (1994) investigated this topic by applying spring-dashpot models, such as Maxwell, Voigt-Kelvin
and three-parameter models, to determine the dynamic stability of the viscoelastic beam. In these inves-
tigations, the dashpot element was assumed to represent the viscous damping of the viscoelastic
material.

Saito and Otomi (1979) investigated the dynamic stability of viscoelastic beams, in which the modulus
of elasticity is represented by a complex number, and the loss factor is related to the damping ratio. Kar
and Sujata (1991), Kar and Ray (1995), and Ray and Kar (1995) considered the dynamic stability of a
cantilevered symmetric sandwich beam, which whose core material is viscoelastic, when subject to a pul-
sating axial force, using a complex modulus model. In the above papers, the complex modulus was
considered to be independent of frequency, and the damping was simulated as a hysteretic damping
model.

Stevens and Evan-Iwanowski (1969) and Stevens (1969) presented analytical and experimental results to
discuss the effect of the behavior of a viscoelastic material on the instability regions of a column, when the
complex modulus of the viscoelastic material is influenced by frequency. Steidel (1989) pointed out that the
damping ratio is a constant for hysteretic damping model; increases with frequency for a viscous damping
model, and decreases as the frequency of actual damping increases. A frequency-independent complex



Y.-S. Shih, Z.-F. Yeh | International Journal of Solids and Structures 42 (2005) 2145-2159 2149

modulus of the viscoelastic material makes the damping ratio of typical hysteretic damping constant, but a
frequency-dependent complex modulus enables the damping ratio to behave more realistically when the fre-
quency of vibration is varied. Accordingly, a model that involves a frequency-dependent complex modulus
captures actual damping more accurately than other models.

Stevens and Evan-Iwanowski (1969) and Stevens (1969) applied the method of perturbation to determine
dynamic instability. Lau et al. (1982), presented an incremental harmonic balance (IHB) method to deter-
mine the parametric instability of viscous damped columns or beam systems. Pierre and Dowell (1985)
implemented the extended IHB method to study the dynamic instability of viscous damped plates. Yuan
and Lau (1991) have applied the IHB method to discuss the effect of in-plane load on a nonlinear panel
flutter. The IHB method has been successfully applied to determine the dynamic instability of a structural
system with viscous damping. This algorithm is easily, simply and conveniently implemented for computer
numerical analysis. However, the dynamic stability of a viscoelastic beam with a complex modulus that de-
pends on the frequency, has not been determined using the IHB method.

This study investigates the dynamic instability of a simply support viscoelastic beam subjected to a peri-
odic axial force. However, the IHB procedure becomes complicated because the dependence of the complex
modulus on frequency is considered. Therefore, this study develops a procedure for coupling the binary-
search method and the complex IHB method, to determine dynamic instability.

2. Equation of motion for a viscoelastic beam

Fig. 1 depicts a straight, simply supported beam of length L, with a uniform cross section. The mass per
unit length of the beam is m, and the moment of inertia of the cross section is /. A periodic axial force
F(t) = F; + Fycoswt is applied at x = L as shown, where o is the frequency of the applied force; ¢ is the
time and F; and Fy are the amplitudes of the static and dynamic forces, respectively. The lateral displace-
ment of the beam is denoted by w(x, ), where x is the axial position along the undeflected beam. Fig. 1
depicts the coordinate system used in this problem.

The material of this beam is considered to be linearly viscoelastic. Hence, the material properties can be
represented by a complex elastic modulus E*, where E* = Eg[1 + if]= Er + 1E;. Eg, which is the real part
of the elastic modulus that determines the stiffness of the material; Ej, the imaginary part of the elastic mod-
ulus that determines the damping capacity of the material, and f, the material loss factor, are functions of
the vibrating frequency w,, (Stevens and Evan-Iwanowski, 1969).

In this study, the beam is at a constant and uniform temperature, so the effect of heat on the material
properties can be neglected. Therefore, the complex modulus is a function only of the vibrating frequency
(Stevens and Evan-Iwanowski, 1969).

y w(x,t)

3 L/——%\« FS + chos ot

o y WLW
..

Fig. 1. Simply supported, viscoelastic beam subjected to an axial force.

- X
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The thickness is much smaller than the length of the beam, so according to Euler-Bernoulli theory, the
effects of shear deformation and rotational inertia can be neglected. The effect of the axial inertia is also
negligible. The governing equation of motion is

L otw o*w *w
I[E}@‘F(FS—FFC]COSCUI)@—FW[@:O (1)
The boundary condition of the simply supported beam can be written as

2

0
w=0 and a—xfzo atx=0andL (2)

The solution to Eq. (1) is assumed to be in the form
N
wix,1) =Y wi(x)f(0) (3)
Jj=1

where N is a positive integer; w{x) is the normalized eigenfunction of the simply supported viscoelastic
beam, given by w;(x) = sin(jmx/L), and f{¢) is the amplitude of vibration in the jth mode.

Substituting Eq. (3) into Eq. (1) and applying the generalized Galerkin’s method yields a complex Mat-
hieu equation for the first mode

& L ;
F+wl[1+lD—2ACOSa)t]f:0 4)
where
ErlIm? F E/E F ERrlIm?
2 R s 1/ERr d . R
= l1-—); D=—"—-—: 2l=——n; P =
CUS mL ( P*)? 1 _ FS/P*7 P* _ Fs, and L2 (5)

Physically, P* is the critical load that causes the static buckling of an elastic beam with elastic modulus Eg;
wy 1s the natural frequency of the lateral vibration of an elastic beam loaded by a constant axial force Fg; D
is the loss factor corrected by the applied static load, and 4 is the parameter of excitation.

The beam is most likely to vibrate at frequency w/2 in the principal region of dynamic instability. A set
of dimensionless parameters is used, such as the parametric vibration frequency w = w/2, the reduced
vibration frequency Q = @w/w,, and the dimensionless time-scale © = ws. These variables are used in Eq.
(4), the dimensionless complex Mathieu equation; the coefficient function of frequency is

&
dz?
All calculations must be used on some reference value of the modulus to elucidate fully the effect of the
dependence of the material properties on the frequency. The quantity E = Eg /E; is introduced, where E; is
a reference constant, which is the static modulus of the real part of the complex modulus E£* at w,, ~ 0 in
this study. The following parameters can be obtained as

M(Q,7,f,7,0) = Q=2 +[1 +iD — 2/.cos 21)f =0 (6)

w2E,[ ? E-PP—F Fy
P = r ; 2 _ ; G=—""- "~ s; and 2).1-:7 7
R A i AT*E I (P — Fy)/mL*P; P:—F, Pr—F, U
Substituting Eq. (7) into Eq. (5), yield
2 22

P =E- P’ QZ:%; and 21=Z (8)
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Then, the boundary of the dynamic stability is the triplet (f, 2, 1) solution to Eq. (6) and can be transferred
into another form of stability boundary (f, n,, 4,).

3. Determining the frequency-dependent coefficient in the complex Mathieu equation

The instability boundary @ and /4 are functions of vibrating frequency, and can be written as Q(w,,) and
Aw,,), which can be determined using the incremental harmonic balance method. Each new neighboring
state is reached through a parameter increment; a new neighboring point (24 w;), A{w,)) corresponds to vi-
brate at frequency w,; and the previous point (2;_i(w;_1), 4—1 (@w;_1)) corresponds to frequency w;_;. The
loss factor parameter D of Eq. (6) also changes.

Accordingly, in each step of the IHB method, the corresponding frequency must to be obtained. This
new frequency is used to calculate the corresponding value of the coefficient in Eq. (6).

Assume €, is the known value in the current step; the value in the initial step is set and the values in the
other steps are calculated. Substituting Q; into Q(w) = w/2w, yields

where w; is the frequency of the current step that corresponds to €,.

The variation in the complex modulus with frequency is known, so the complex modulus over the fre-
quency interval [Wmin, ®max] 18 Of interest. The binary-search numerical method (Burden et al., 1981) is
implemented to search for solution w; of Eq. (9) in the frequency interval [Wmin, ®max), for which
B(w;) = 0. This method calls for a repeated halving of intervals [wmyin, ®max] and, at each step, identifying
the half that contains py. Initially, set uy = 0y, and vy = 0. Define a sub-interval [uy, v, ], and let p;
be the midpoint of interval [uy, v;], such that p; = (ux + vi)/2. If B(py) =~ 0, then w; = p, and the iteration
is terminated; if not, continue to apply the process in the new sub-interval [u;;,v.+1]. The iteration is
terminated when |p;;—pi| < &, where ¢ is a specified tolerance, and w; = pj+1.

Substituting w, into Eq. (5) determines the frequency-dependent coefficient D, in Eq. (4). Then, the com-
plex Mathieu equation with the frequency-dependent coefficient is transferred into the complex Mathieu
equation with the frequency-independent coefficient. Then, the incremental harmonic balance method is
employed to reach the unstable boundary point (2/(w;), A{w))).

Substituting w; into Eq. (7) yields G;, which corresponds to ;. Thereafter, the processor of the incremen-
tal harmonic balance method reached the unstable boundary point. Substituting G; into Eq. (8) yields the
unstable boundary point (7, 4,).

4. THB method for solving the complex Mathieu equation

The procedure for seeking periodic solutions to the Mathieu equation with complex coefficients using the
IHB method, includes two steps. The first step is a Newton—Raphson procedure. The current solution to
Eq. (6) for Ay, fo and Q,, can be increased (by an mount A) to yield a neighboring solution,

L=lo+ N f=fitAf; Q=0+ AQ (10)

Lau et al. (1982) and Pierre and Dowell (1985) detailed the procedure for implementing the IHB method.
They modified the IHB method into a complex form.
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Expanding Eq. (6) as a Taylor series about the initial state yields
M(Qy + AQ, 2o + AL, fo + Af T, 0)
oM oM oM
AQ +

My M A+ 20
"3l | My

Neglecting higher order terms yields the linearized incremental equation,

Af + higher order terms = 0 (11)
0

C—R—AL-P-AQ-0=0 (12)
where
d’A . ’
C= Q(Z)—f+ [l +1iD —2Jgcos2t|Af; P =2f,cos2t; Q= —2Qo—d fo; and
dr? dr?
,d*fy .
R=— QOW—HI—HD_MOCOSZTV (13)

Here, R is the corrective term that goes to zero when the solution is reached, and P and Q are the unbal-
anced terms, associated with the increments AL and AQ, respectively.

The second step of the incremental harmonic balance method is the Galerkin procedure. The boundaries
of the regions of instability correspond to periodic solutions of Eq. (6) with periods 2n/w, and 4n/w,,.
Hence, the functions fy(t) and Af{t) are periodic and can be expressed in truncated Fourier series form as,

-1
Jo(r) = Z (ay cos kt + iby sin kt) (14)
k=135,...
V-1
Af(r) = (Aay cos kt + 1Aby sin kt) (15)
k=135,

in the principal region of instability, corresponding to a solution with period 27 in terms of 7. Here, N is the
number of temporal terms taken into account. Substituting Eqs. (14) and (15) into Eq. (12), and applying
the Galerkin procedure for one period, yields

/ZHC{E‘)f}dr:/2H(R+AA-P+AQ~Q){8f}dr (16)
0 0
where

{8/} = [cos T + sin , cos 3t + sin 31, cos 51 + sin 57, ..., cos(2N — 1)t + sin(2N — 1)7]" (17)

Let us define the amplitude vector as {a} =[ay, ..., aony_1, b1, - - -, bZN_l]T and its corresponding increment
as {Aa} =[Aay, ..., Aary_1, Aby, . . ., Absy 11T Eq. (16) represents N algebraic linear equations in general-
ized coordinates Aa;s and Ab;s. Equating real and imaginary parts derives from Eq. (16) 2N algebraic linear
equations with real coefficients. These 2V algebraic linear equations can be written in matrix form as

{cl]] A :{{Rl}} {{Pl}}_Aq {{Ql}}_A s
ealea = (g b (i v {10 00 1
where [C1], [C5], {R}, {R>}, {P1}, {P>}, {Q;} and {Q,} are as shown in Appendix A. Eq. (18) can be

rewritten as
(Cl{Aa} = {R} + {P} - A2 + {0} - AQ (19)
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The number of unknowns is two more than the number in Eq. (19). Two constraints, which relate the
unknowns {Aa}, AQ and A4 in Eq. (19), must be added. The boundary of dynamic instability (2, 1) of
the system is of primary interest, with ||{a}|| as a parameter, which is fixed for each curve. Therefore,

the first constraint is ||{a}|| = ||{a} + {Aa}||. The second constraint is either A1 =0 or AQ = 0. The con-
straints ||{a}|| = |[{a} + {Aa}| and A4 = 0 are chosen in this study. Hence, at each step, the following must
be solved;
{ [C{Aa} = {R} + {0} - AQ
(20)
[{a} I = [{a} + {Aa}]]

Newton—Raphson iteration with an updated corrective vector { R} within an incremental step was ap-
plied. The process is repeated until the magnitude of the corrective vector { R} is acceptably small, at which
point a solution is obtained.

5. Algorithms for determining the boundary of parametric instability of a viscoelastic beam

The complex modulus of a viscoelastic material depends on the vibrating frequency, so the binary-
search method must be coupled with the incremental harmonic balance method to determine the
boundary of dynamic instability. A boundary of dynamic instability is obtained using the following
procedure.

2.4

1 term of Stevens and Evan-lwanowski (1969)

2 terms of Stevens and Evan-lwanowski (1969)

o
——
—<&—  1term in the present study
207 —o—
—A—
X

2 terms in the present study

3 terms in the present study

4 terms in the present study

Load Parameter A,

0.0 T T T T T 1
0.5 1.0 1.5 2.0
Frequency Parameter n,

Fig. 2. Influence of the considered number of harmonic terms on the boundary of principal instability and comparison with Stevens
and Evan-Iwanowski (1969) for F/P; = 0.6.
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2.4
1 term of Stevens and Evan-lwanowski (1969)
1 2 terms of Stevens and Evan-lwanowski (1969)
2.0 1 terms of present

2 terms of present

3 terms of present

4 terms of present

Khobes

Load Parameter .,

0.0 T T T T T T T 1
0.4 0.8 1.2 1.6 2.0
Frequency Parameter n,

Fig. 3. Influence of the number of harmonic terms on the boundary of principal instability and comparison with Stevens and
Evan-Iwanowski (1969) for F,/P; = 0.48.

S

1.6 E' case

=
N
I

Load Parameter 2,
©
(o]
|

0.4

0.0 T T T T T 1
0.8 1.2 1.6 2.0
Frequency Parameter n,

Fig. 4. Principal boundary of instability in the Egr and E* cases for F/P; = 0.5.
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(1) The initial point is set to the minimum value of the excitation parameter, A.

(2) The binary-search method is used to determine the vibrating frequency in Eq. (9), and the correspond-
ing Q. The frequency-dependent coefficients D and G, corresponding to the current frequency, are also
obtained.

(3) Then, a point (£, 1) on the boundary of dynamic instability is obtained using the incremental harmonic
balance method.

(4) When the corrective vector { R} is not close to zero, steps 2 and 3 are repeated until the corrective vector
{R} is smaller than the convergence parameter.

(5) The parameter / is increased by A4, and steps 2-4 repeated to locate the wanted point on the boundary
of dynamic instability.

6. Numerical results and discussion

In this study, the boundaries of dynamic instability for the viscoelastic beam are determined. The visco-
elastic material is considered to be as polymethyl methacrylate (Plexiglass) at room temperature. The length
L of the beam is 445mm (17.521n.). The cross section of the beam is rectangular, with a width and thickness
of 25.7mm (1.01in.) and 6mm (0.2361n.), respectively. Polymethyl methacrylate (Plexiglass) has a density
of 1190.2357kg/m?* (0.0431b/in.?), and a complex modulus, E£* that is a function of vibrating frequency. The
real and imaginary parts of the complex modulus (Stevens and Evan-Iwanowski, 1969) have been presented
as

ER = aw”; and EI = bw! (21)

Load Parameter 2,
N
|

=
|

. Fy/P;=0.9
. F,/P;=0.8
F,/P;=0.7
. F,/P;=0.6
. Fy/P;=0.5
F,/P;=0.4
0 ' | ' | g: FlP; 0[3

0.4 0.8 1.2 1.6

Q@ "o a0 o

Frequency Parameter n,

Fig. 5. Influence of the static force F; on the boundary of principal instability.
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where a = 3.02GPa (4.38 x 10°psi), b = 501.9383 MPa (7.28 x 10*psi), p = 0.0815 and ¢ = —0.0635. The
complex modulus is validated over the frequency range 15-1000 Hz (100-6000rad/s). In Eq. (21), the real
part of the modulus increases with the frequency of vibration, but the imaginary part of the modulus
decreases.

According to Eq. (7), the Euler critical load P; is 72.95N (16.41b) for the simply supported beam and the
natural frequency of lateral vibration is 141.42(1 — F /P;*)l/ *rad/s.

Figs. 2 and 3 presents the principal boundaries of parametric instability with different numbers of har-
monic terms for the different F/P; ratios, obtained using the algorithms. The results are compared with the
boundary of instability determined by Stevens and Evan-Iwanowski (1969). In Fig. 2, the boundary curves
of the one-term approach and the two-term approach are consistent with the results of Stevens and Evan-
Iwanowski (1969). The agreement between the results of the two-term approach in this study and the insta-
bility boundary obtained by Stevens and Evan-Iwanowski (1969) is good.

As shown in Figs. 2 and 3, a three-term approach gives highly accurate results. The curves of the insta-
bility boundary almost coincide with those of more harmonic terms, even for large values of the parameter
of excitation, A.. The results of the three-term and four-term approaches converge. Formulating the equa-
tion of the instability boundary for large numbers of harmonic terms is difficult using the conventional
method. The algorithms in this study easily and conveniently determine the boundary of parametric insta-
bility for any number of harmonic terms.

Now, the following two cases are considered one that involves the complex modulus E*, and one that
involves only the real part of the modulus, Eg (E; =0). In both cases, the elastic modulus depends on
the frequency of vibration. Fig. 4 compares the curves in the Er and E* cases, and the principal boundary
of instability for the E* case is shifted away from the y, = 0 axis. This phenomenon shows the effect of the
damping capacity of the viscoelastic material, and the loss factor presents the damping capacity of the
material.

2.0 d
a
1.6
e
o 1.2
@
S
g
<
o
g 0.8
o
—
0.4 a: L=445mm
b: L =396 mm
c: L=346 mm
d: L=297 mm
0.0 T T T T T T T T T 1
0 1 2 3 4 5

Frequency Parameter 1,

Fig. 6. Influence of the length of the beam on the principal boundary of instability for F/P; = 0.5.
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Fig. 5 plots the boundaries of principal instability under various static forces, F;. Here, 7} = ;% o s
. . . w4 Erl/mL
defined. Increasing the static force reduces the natural frequency and increases the loss factor. Therefore,
the region of principal instability shifts away from the 1, = 0 axis at low frequencies as the static force is
increased.
The natural frequency of the beam is inversely proportional to L*. The boundary of principal instability
is at a frequency of the applied force that is double the fundamental natural frequency of the beam. The

natural frequency of the beam increases as the length of the beam decreases. Herein, the parameter

=2 ?

n 77 and Lo =445mm are defined. Consider a beam of length between 297 and 445 mm.
0

v T AREI(1—Fy/P)/m
Fig. 6 reveals that the frequency of the boundary of principal instability rises as the length of the beam de-
creases, but the loss factor changes little in this length range. The stiffness of the beam increases as the

length of the beam decreases.

7. Conclusions

In this study, a simply supported viscoelastic beam is subjected to an axially harmonic load, whose com-
plex modulus depends on the frequency of vibration. The principal dynamic instability is determined by
combining the binary-search numerical procedure and the complex IHB method, modified by the authors
into complex form. The results of this study agree closely with the results by Stevens and Evan-Iwanowski
(1969). The boundary of parametric instability for any number of harmonic terms is easily, simply and con-
veniently determined. This new algorithm can determine the regions of dynamic instability of the complex
Mathieu equation with frequency-dependent coefficients, for any engineering problem.

The numerical results indicate that the frequency influences the regions of dynamic stability. Addition-
ally, an increase in the static force or the length of the beam has a stabilizing effect.

Appendix A

rp2n

[C1],,, = Re / [—Qn’(cosnt + isinnt) + (1 4 iD — 24 cos 2t)(cos nt + isinnt)| (cos mt + sin mr)dr}
Lo
r pr2n

[Cy], = 1Im / [—Qgn*(cosnt + isinnt) + (1 4 iD — 24.cos 2t)(cos nt + isinnt)| (cos mt + sin mr)dr}
Lo

r p2n 2
{Ri}, =Re / { {Qé%Jr (1+1iD — Agcos 2r)f0} (cosmt + sinmr)}dr}
LJo T

r p2n 2
{R2},, =Im / { {Qé% + (141D — Jycos 21)f0} (cos mt + sin mr)}dr}
L/o T

rp2n
{P:}, =Re / (2cos2tfy)(cos mt + sin mr)dr]
LJo

r p2n
{P,},, = Im / (2 cos 2tfy)(cosmt + sin mr)dr]
LJo
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2n 2
{01}, =Re U} <—ZQO %) (cos mt + sin mt)dr]

2n 2
{0,}, = Im {/0 <—ZQO %) (cos mt + sin mr)dr]
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